Cooperative Control for Multi-Agent Systems in Microgrid Distributed Generation

F. L. Lewis

National Academy of Inventors. Fellow IEEE, InstMC, and IFAC
Moncrief-O’Donnell Endowed Chair and Head, Advanced Controls & Sensors Group
UTA Research Institute (UTARI), The University of Texas at Arlington, USA
Qian Ren Thousand Talents Consulting Professor, Northeastern University, Shenyang, China
http://www.uta.edu/utari/acs, lewis@uta.edu

ABSTRACT

With aging power distribution systems and new opportunities for renewable energy generation, the smart grid and microgrid are becoming increasingly important. Microgrid allows the addition of local loads and local distributed generation (DG) including wind power, solar, hydroelectric, fuel cells, and microturbines. Microgrid holds out the hope of scalable growth in power distribution systems by distributed coordination of local loads and local DG so as not to overload existing power grid generation and transmission capabilities. Sample microgrids are smart buildings, isolated rural systems, and offshore drilling systems. Microgrid takes power from the main power grid when needed, and is able to provide power back to the main power system when there is local generation excess.

When connected to the main distribution grid, microgrid receives a frequency reference from grid synchronous generators. Standard operating procedures call for disconnecting microgrid from the main power grid when disturbances occur. On disconnection, or in islanded mode, the absence of rotating synchronous generation leads to a loss of frequency references. After islanding, it is necessary to return Microgrid DG frequencies to synchronization, provide voltage support, and ensure power quality.

In this talk we develop a new method of synchronization for cooperative systems linked by a communication graph topology that is based on a novel distributed feedback linearization technique. This cooperative feedback linearization approach allows for different dynamics of agents such as occur in the DGs of a microgrid. It is shown the new cooperative protocol design method allows for frequency synchronization, voltage synchronization, and distributed power balancing in a microgrid after a grid disconnection islanding event. The distributed nature of the cooperative feedback linearization method is shown to lead to sparse communication topologies that are more suited to microgrid control, more reliable, and more economical than standard centralized secondary power control methods.
Outstanding Service Award from Dallas IEEE Section, selected as Engineer of the Year by Ft. Worth IEEE Section. Listed in Ft. Worth Business Press Top 200 Leaders in Manufacturing. Received the 2010 IEEE Region 5 Outstanding Engineering Educator Award and the 2010 UTA Graduate Dean’s Excellence in Doctoral Mentoring Award. Elected to UTA Academy of Distinguished Teachers 2012. Texas Regents Outstanding Teaching Award 2013. He served on the NAE Committee on Space Station in 1995.